한 줄 소개
'''
---GGoMa/MNIST Auto Generate Code---
Author : GGoMa
Project Name: MNIST
Project Link: https://blockai.kr/GGoMa/MNIST (BlockAI)
Create Date : 2023-01-12
---Requirements---
# 사용자의 환경(OS, CUDA 등)에 따라 라이브러리 버전을 맞춰주세요
pip install torch==1.12 torchvision==0.13.0 torchtext==0.13.0 torchaudio==0.12.0
pip install pytorch-lightning
pip install tqdm
pip install pandas
pip install scikit-learn
---Folder Structure---
--📂 data
|--📂 input
|--📂 train
|--📁 LABEL_NAME_1
|--🖼️ IMAGE_FILE
|--🖼️ IMAGE_FILE
|--🖼️ ...
|--📁 LABEL_NAME_2
|--🖼️ IMAGE_FILE
|--🖼️ IMAGE_FILE
|--🖼️ ...
|--📁 ...
|--📂 val
|--📁 LABEL_NAME_1
|--🖼️ IMAGE_FILE
|--🖼️ IMAGE_FILE
|--🖼️ ...
|--📁 LABEL_NAME_2
|--🖼️ IMAGE_FILE
|--🖼️ IMAGE_FILE
|--🖼️ ...
|--📁 ...
|--📂 test
|--📁 LABEL_NAME_1
|--🖼️ IMAGE_FILE
|--🖼️ IMAGE_FILE
|--🖼️ ...
|--📁 LABEL_NAME_2
|--🖼️ IMAGE_FILE
|--🖼️ IMAGE_FILE
|--🖼️ ...
|--📁 ...
--📄 MNIST.py
--📄 MNIST.ipynb
--📄 requirements.txt
'''
import os
import argparse
import copy
import random
from glob import glob
from tqdm import tqdm
import numpy as np
import pandas as pd
from sklearn import preprocessing
from PIL import Image
import torch
import pytorch_lightning as pl
import torchvision
path_sep = os.sep
# https://pytorch.org/tutorials/beginner/basics/data_tutorial.html#creating-a-custom-dataset-for-your-files
class Dataset(torch.utils.data.Dataset):
def __init__(self, inputs, targets=[]):
self.inputs = inputs
self.targets = targets
self.input_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
])
# 학습 및 추론 과정에서 데이터를 1개씩 꺼내오는 곳
def __getitem__(self, idx):
# 정답이 있다면 if문을, 없다면 else문을 수행합니다
if len(self.targets) == 0:
return self.input_transform(Image.open(self.inputs[idx]))
else:
return self.input_transform(Image.open(self.inputs[idx])), torch.tensor(self.targets[idx])
# 입력하는 개수만큼 데이터를 사용합니다
# 'return 100'이면 1에폭에 100개의 데이터만 사용합니다
def __len__(self):
return len(self.inputs)
# https://pytorch-lightning.readthedocs.io/en/stable/extensions/datamodules.html
class Dataloader(pl.LightningDataModule):
# 데이터의 종류에 따라 코드 수정이 필요할 수 있습니다
def __init__(self, data_folder, batch_size, train_ratio, shuffle):
super().__init__()
self.data_folder = data_folder
self.batch_size = batch_size
self.train_ratio = train_ratio
self.shuffle = shuffle
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
self.predict_dataset = None
def get_inputs_targets(self, data):
inputs = []
targets = []
for data_path in data:
# 이미지 경로를 저장합니다
inputs.append(data_path)
# 이미지 경로에서 타겟 값을 분리하여 저장합니다
targets.append(data_path.split(path_sep)[-2])
return inputs, targets
def setup(self, stage='fit'):
# train 폴더에 있는 모든 이미지 경로를 받아옵니다
# 학습 데이터와 검증 데이터셋을 비율에 맞춰 분리하고, 데이터셋을 만듭니다
total_data = glob(os.path.join(self.data_folder, 'input', 'train', '*', '*'))
# 데이터가 폴더명으로 정렬되어있어서 shuffle을 수행합니다
random.shuffle(total_data)
train_data = total_data[:int(len(total_data) * self.train_ratio)]
val_data = total_data[int(len(total_data) * self.train_ratio):]
train_inputs, train_targets = self.get_inputs_targets(train_data)
val_inputs, val_targets = self.get_inputs_targets(val_data)
# test 폴더에 있는 모든 이미지 경로를 받아와서 데이터셋을 만듭니다
test_data = glob(os.path.join(self.data_folder, 'input', 'test', '*', '*'))
test_inputs, test_targets = self.get_inputs_targets(test_data)
self.target_encoder = preprocessing.LabelEncoder()
train_targets = self.target_encoder.fit_transform(train_targets)
val_targets = self.target_encoder.transform(val_targets)
test_targets = self.target_encoder.transform(test_targets)
self.train_dataset = Dataset(train_inputs, train_targets)
self.val_dataset = Dataset(val_inputs, val_targets)
self.test_dataset = Dataset(test_inputs, test_targets)
self.predict_dataset = Dataset(test_inputs, [])
def train_dataloader(self):
return torch.utils.data.DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=args.shuffle)
def val_dataloader(self):
return torch.utils.data.DataLoader(self.val_dataset, batch_size=self.batch_size)
def test_dataloader(self):
return torch.utils.data.DataLoader(self.test_dataset, batch_size=self.batch_size)
def predict_dataloader(self):
return torch.utils.data.DataLoader(self.predict_dataset, batch_size=self.batch_size)
# https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html
class Model(pl.LightningModule):
def __init__(self):
super().__init__()
self.save_hyperparameters()
self.conv2d_1 = torch.nn.Conv2d(in_channels=1, out_channels=8, kernel_size=3)
self.maxpool2d_1 = torch.nn.MaxPool2d(kernel_size=2)
self.conv2d_2 = torch.nn.Conv2d(in_channels=8, out_channels=64, kernel_size=4)
self.maxpool2d_2 = torch.nn.MaxPool2d(kernel_size=2)
self.linear_1 = torch.nn.Linear(in_features=1600, out_features=10)
self.dropout_1 = torch.nn.Dropout(p=0.3)
self.relu_1 = torch.nn.ReLU()
self.crossentropyloss_1 = torch.nn.CrossEntropyLoss()
def forward(self, x):
x = self.conv2d_1(x)
x = self.dropout_1(x)
x = self.relu_1(x)
x = self.maxpool2d_1(x)
x = self.conv2d_2(x)
x = self.dropout_1(x)
x = self.relu_1(x)
x = self.maxpool2d_2(x)
x = torch.flatten(x, start_dim=1)
x = self.linear_1(x)
return x
def training_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = self.crossentropyloss_1(logits, y.long().squeeze())
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = self.crossentropyloss_1(logits, y.long().squeeze())
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
loss = self.crossentropyloss_1(logits, y.long().squeeze())
self.log("test_loss", loss)
return loss
def predict_step(self, batch, batch_idx):
x = batch
logits = self(x)
return logits
def configure_optimizers(self):
# 이곳에서 lr 값을 변경할 수 있습니다
optimizer = torch.optim.Adam(self.parameters(), lr=0.0001)
return optimizer
if __name__ == '__main__':
# https://docs.python.org/ko/3/library/argparse.html
# 하이퍼 파라미터 등 각종 설정값을 입력받습니다
# 터미널 실행 예시 : python3 run.py --batch_size=64 ...
# 실행 시 '--batch_size=64' 같은 인자를 입력하지 않으면 default 값이 기본으로 실행됩니다
parser = argparse.ArgumentParser()
parser.add_argument('--data_folder', default='./data')
parser.add_argument('--batch_size', default=32)
parser.add_argument('--max_epoch', default=10)
parser.add_argument('--shuffle', default=True)
parser.add_argument('--train_ratio', default=0.8)
args = parser.parse_args()
dataloader = Dataloader(args.data_folder, args.batch_size, args.train_ratio, args.shuffle)
model = Model()
# 'patience=3'이면 3에폭동안 monitor값이 좋아지지 않으면 학습을 자동 중단합니다
early_stop_callback = pl.callbacks.EarlyStopping(monitor='val_loss', patience=3)
# https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html
# 학습 및 추론을 위한 Trainer 설정
# gpu가 없으면 'gpus=0'을, gpu가 여러개면 'gpus=4'처럼 사용하실 gpu의 개수를 입력해주세요
trainer = pl.Trainer(gpus=1, max_epochs=args.max_epoch, callbacks=[early_stop_callback])
trainer.fit(model=model, datamodule=dataloader)
# 테스트 데이터에 타겟값이 있을때만 trainer.test를 실행할 수 있습니다
trainer.test(model=model, datamodule=dataloader)
predictions = trainer.predict(model=model, datamodule=dataloader)