Press enter or space to select a node.You can then use the arrow keys to move the node around. Press delete to remove it and escape to cancel.
Press enter or space to select an edge. You can then press delete to remove it or escape to cancel.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
'''
---BlockAI/T5-small Auto Generate Code---
Author : BlockAI
Project Name: T5-small
Project Link: https://blockai.kr/BlockAI/T5-small (BlockAI)
Create Date : 2024-10-05
---Requirements---
# 사용자의 환경(OS, CUDA 등)에 따라 라이브러리 버전을 맞춰주세요
pip install torch==2.0 torchvision==0.15.2 torchtext==0.15.2 torchaudio==2.0.2
pip install pytorch-lightning==2.0.4
pip install tqdm
pip install pandas
pip install scikit-learn
pip install transformers
pip install timm
---Folder Structure---
--📂 data
|--📄 train.csv
|--📄 test.csv
--📄 T5-small.py
--📄 T5-small.ipynb
--📄 requirements.txt
'''
import os
import argparse
import copy
from glob import glob
from tqdm import tqdm
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
import torch
import pytorch_lightning as pl
path_sep = os.sep
# https://pytorch.org/tutorials/beginner/basics/data_tutorial.html#creating-a-custom-dataset-for-your-files
class Dataset(torch.utils.data.Dataset):
def __init__(self, inputs, targets=[]):
self.inputs = inputs
self.targets = targets
# 학습 및 추론 과정에서 데이터를 1개씩 꺼내오는 곳
def __getitem__(self, idx):
# 정답이 있다면 if문을, 없다면 else문을 수행합니다
if len(self.targets) == 0:
return torch.tensor(self.inputs[idx])
else:
return torch.tensor(self.inputs[idx]), torch.tensor(self.targets[idx])
# 입력하는 개수만큼 데이터를 사용합니다
# 'return 100'이면 1에폭에 100개의 데이터만 사용합니다
def __len__(self):
return len(self.inputs)
# https://pytorch-lightning.readthedocs.io/en/stable/extensions/datamodules.html
class Dataloader(pl.LightningDataModule):
# 데이터의 종류에 따라 코드 수정이 필요할 수 있습니다
def __init__(self, data_folder, batch_size, train_ratio, shuffle):
super().__init__()
self.data_folder = data_folder
self.batch_size = batch_size
self.train_ratio = train_ratio
self.shuffle = shuffle
self.train_dataset = None
self.test_dataset = None
self.predict_dataset = None
def preprocessing(self, data):
# 타겟 데이터가 없으면 빈 배열을 리턴합니다.
try:
targets = data[self.target_columns].values.tolist()
inputs = data.drop(self.target_columns, axis=1).values.tolist()
except:
targets = []
inputs = data.values.tolist()
return inputs, targets
def setup(self, stage='fit'):
if stage == 'fit':
train_data = pd.read_csv(os.path.join(self.data_folder, 'train.csv'), sep=',', header=None, index_col=None, encoding='utf-8')
# 학습데이터 준비
train_inputs, train_targets = self.preprocessing(train_data)
# train 데이터만 shuffle을 적용해줍니다, 필요하다면 val, test 데이터에도 shuffle을 적용할 수 있습니다
self.train_dataset = Dataset(train_inputs, train_targets)
else:
# 평가데이터 준비
test_data = pd.read_csv(os.path.join(self.data_folder, 'test.csv'), sep=',', header=None, index_col=None, encoding='utf-8')
test_inputs, test_targets = self.preprocessing(test_data)
self.test_dataset = Dataset(test_inputs, test_targets)
self.predict_dataset = Dataset(test_inputs, [])
def train_dataloader(self):
return torch.utils.data.DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=args.shuffle)
def test_dataloader(self):
return torch.utils.data.DataLoader(self.test_dataset, batch_size=self.batch_size)
def predict_dataloader(self):
return torch.utils.data.DataLoader(self.predict_dataset, batch_size=self.batch_size)
# https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html
class Model(pl.LightningModule):
def __init__(self):
super().__init__()
self.save_hyperparameters()
self.transformer_1 = torch.nn.Transformer()
self.linear_1 = torch.nn.Linear(in_features=512, out_features=32128)
self.embedding_1 = torch.nn.Embedding(num_embeddings=32128, embedding_dim=512)
self.softmax_1 = torch.nn.Softmax()
def forward(self, x_emptycsv):
x_0 = self.embedding_1(x_emptycsv)
x_0 = self.transformer_1(x_0)
x_0 = self.linear_1(x_0)
x_0 = self.softmax_1(x_0)
return
def training_step(self, batch, batch_idx):
x_emptycsv, y = batch
logits = self(x_emptycsv)
self.log("train_loss", loss)
return loss
def validation_step(self, batch, batch_idx):
x_emptycsv, y = batch
logits = self(x_emptycsv)
self.log("val_loss", loss)
return loss
def test_step(self, batch, batch_idx):
x_emptycsv, y = batch
logits = self(x_emptycsv)
self.log("test_loss", loss)
return loss
def predict_step(self, batch, batch_idx):
x_emptycsv = batch
logits = self(x_emptycsv)
return logits
def configure_optimizers(self):
pass
if __name__ == '__main__':
# https://docs.python.org/ko/3/library/argparse.html
# 하이퍼 파라미터 등 각종 설정값을 입력받습니다
# 터미널 실행 예시 : python3 run.py --batch_size=64 ...
# 실행 시 '--batch_size=64' 같은 인자를 입력하지 않으면 default 값이 기본으로 실행됩니다
parser = argparse.ArgumentParser()
parser.add_argument('--data_folder', default='./data')
parser.add_argument('--batch_size', default=0)
parser.add_argument('--max_epoch', default=0)
parser.add_argument('--shuffle', default=False)
parser.add_argument('--train_ratio', default=1.0)
args = parser.parse_args()
dataloader = Dataloader(args.data_folder, args.batch_size, args.train_ratio, args.shuffle)
model = Model()
# https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html
# 학습 및 추론을 위한 Trainer 설정
trainer = pl.Trainer(accelerator='gpu', devices=1, max_epochs=args.max_epoch)
trainer.fit(model=model, datamodule=dataloader)
# trainer.test(model=model, datamodule=dataloader)
# predictions = trainer.predict(model=model, datamodule=dataloader)