BlockAI 베타서비스가 오픈되었습니다.
logo
BlockAI

T5-small

BlockAI
BlockAI
Copied 1Updated on 2024.10.06
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 ''' ---BlockAI/T5-small Auto Generate Code--- Author : BlockAI Project Name: T5-small Project Link: https://blockai.kr/BlockAI/T5-small (BlockAI) Create Date : 2024-10-05 ---Requirements--- # 사용자의 환경(OS, CUDA 등)에 따라 라이브러리 버전을 맞춰주세요 pip install torch==2.0 torchvision==0.15.2 torchtext==0.15.2 torchaudio==2.0.2 pip install pytorch-lightning==2.0.4 pip install tqdm pip install pandas pip install scikit-learn pip install transformers pip install timm ---Folder Structure--- --📂 data |--📄 train.csv |--📄 test.csv --📄 T5-small.py --📄 T5-small.ipynb --📄 requirements.txt ''' import os import argparse import copy from glob import glob from tqdm import tqdm import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.model_selection import train_test_split import torch import pytorch_lightning as pl path_sep = os.sep # https://pytorch.org/tutorials/beginner/basics/data_tutorial.html#creating-a-custom-dataset-for-your-files class Dataset(torch.utils.data.Dataset): def __init__(self, inputs, targets=[]): self.inputs = inputs self.targets = targets # 학습 및 추론 과정에서 데이터를 1개씩 꺼내오는 곳 def __getitem__(self, idx): # 정답이 있다면 if문을, 없다면 else문을 수행합니다 if len(self.targets) == 0: return torch.tensor(self.inputs[idx]) else: return torch.tensor(self.inputs[idx]), torch.tensor(self.targets[idx]) # 입력하는 개수만큼 데이터를 사용합니다 # 'return 100'이면 1에폭에 100개의 데이터만 사용합니다 def __len__(self): return len(self.inputs) # https://pytorch-lightning.readthedocs.io/en/stable/extensions/datamodules.html class Dataloader(pl.LightningDataModule): # 데이터의 종류에 따라 코드 수정이 필요할 수 있습니다 def __init__(self, data_folder, batch_size, train_ratio, shuffle): super().__init__() self.data_folder = data_folder self.batch_size = batch_size self.train_ratio = train_ratio self.shuffle = shuffle self.train_dataset = None self.test_dataset = None self.predict_dataset = None def preprocessing(self, data): # 타겟 데이터가 없으면 빈 배열을 리턴합니다. try: targets = data[self.target_columns].values.tolist() inputs = data.drop(self.target_columns, axis=1).values.tolist() except: targets = [] inputs = data.values.tolist() return inputs, targets def setup(self, stage='fit'): if stage == 'fit': train_data = pd.read_csv(os.path.join(self.data_folder, 'train.csv'), sep=',', header=None, index_col=None, encoding='utf-8') # 학습데이터 준비 train_inputs, train_targets = self.preprocessing(train_data) # train 데이터만 shuffle을 적용해줍니다, 필요하다면 val, test 데이터에도 shuffle을 적용할 수 있습니다 self.train_dataset = Dataset(train_inputs, train_targets) else: # 평가데이터 준비 test_data = pd.read_csv(os.path.join(self.data_folder, 'test.csv'), sep=',', header=None, index_col=None, encoding='utf-8') test_inputs, test_targets = self.preprocessing(test_data) self.test_dataset = Dataset(test_inputs, test_targets) self.predict_dataset = Dataset(test_inputs, []) def train_dataloader(self): return torch.utils.data.DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=args.shuffle) def test_dataloader(self): return torch.utils.data.DataLoader(self.test_dataset, batch_size=self.batch_size) def predict_dataloader(self): return torch.utils.data.DataLoader(self.predict_dataset, batch_size=self.batch_size) # https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html class Model(pl.LightningModule): def __init__(self): super().__init__() self.save_hyperparameters() self.transformer_1 = torch.nn.Transformer() self.linear_1 = torch.nn.Linear(in_features=512, out_features=32128) self.embedding_1 = torch.nn.Embedding(num_embeddings=32128, embedding_dim=512) self.softmax_1 = torch.nn.Softmax() def forward(self, x_emptycsv): x_0 = self.embedding_1(x_emptycsv) x_0 = self.transformer_1(x_0) x_0 = self.linear_1(x_0) x_0 = self.softmax_1(x_0) return def training_step(self, batch, batch_idx): x_emptycsv, y = batch logits = self(x_emptycsv) self.log("train_loss", loss) return loss def validation_step(self, batch, batch_idx): x_emptycsv, y = batch logits = self(x_emptycsv) self.log("val_loss", loss) return loss def test_step(self, batch, batch_idx): x_emptycsv, y = batch logits = self(x_emptycsv) self.log("test_loss", loss) return loss def predict_step(self, batch, batch_idx): x_emptycsv = batch logits = self(x_emptycsv) return logits def configure_optimizers(self): pass if __name__ == '__main__': # https://docs.python.org/ko/3/library/argparse.html # 하이퍼 파라미터 등 각종 설정값을 입력받습니다 # 터미널 실행 예시 : python3 run.py --batch_size=64 ... # 실행 시 '--batch_size=64' 같은 인자를 입력하지 않으면 default 값이 기본으로 실행됩니다 parser = argparse.ArgumentParser() parser.add_argument('--data_folder', default='./data') parser.add_argument('--batch_size', default=0) parser.add_argument('--max_epoch', default=0) parser.add_argument('--shuffle', default=False) parser.add_argument('--train_ratio', default=1.0) args = parser.parse_args() dataloader = Dataloader(args.data_folder, args.batch_size, args.train_ratio, args.shuffle) model = Model() # https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html # 학습 및 추론을 위한 Trainer 설정 trainer = pl.Trainer(accelerator='gpu', devices=1, max_epochs=args.max_epoch) trainer.fit(model=model, datamodule=dataloader) # trainer.test(model=model, datamodule=dataloader) # predictions = trainer.predict(model=model, datamodule=dataloader)